

LLRF-ATCA LOW LEVEL APPLICATIONS

Tomasz Czarski, Maciej Linczuk Institute of Electronic Systems, WUT, Warsaw

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw

HELMHOLTZ

AGENDA

- 1. ATCA architecture for low level applications requirements, architecture, communication, scalability
- 2. ATCA motherboard for low level applications architecture, resources, communication
- 3. Multiprocessor computation and distribution of algorithms
- 4. Review of current algorithms
- 5. Future algorithm development
- 6. Experimental results

ATCA architecture for low level applications

Requirements for LLRF System:

- Total length of the facility: 3.4 km, Accelerator tunnel: 2.1km, Depth underground: 6 - 38 meters
- Wavelength of X-ray radiation: 6 to 0.085 nm
- ~1000 s.c. cavities (1.3 GHz), 30 RF station 30MV/m(10 MW klystron)
- Required field stability : 10-5 in amplitude, 0.01° in phase
- Continuous operation is required: only one maintenance day per month

Advantages:

- Scalable / Flexible (modularity partially upgradeable, add new, not know during design, functionality)
- Reliable / Redundant (VM, timing, power, etc...)
- Fast and high resolution inputs, > 100 inp. a. ch. / RF St.
- Low latency (fast communication links)
- Support modern control algorithms
- Reliability, operability and maintainability

VME SIMCON-DSP

Limits of current architecture:

- Communications: 😕
- One FPGA chip for cavity contorller and system communications
- Slow VME bus communication
- Limits for number of I/O signals
- No dual CPU VME boards for support

ATCA architecture for low level applications

- Architecture
- Communication
- Scalability

LLRF-ATCA STANDARD

ATCA and AMC Boards:

- AMC module 8xADC + FPGA (100MHz)
- AMC Vector Modulator + 2xDAC (800MHz) + memory + FPGA
- AMC Vector Modulator + 1xDAC (1600MHz) + memory
- AMC module Timming receiver (Trigger) + clock synthezer
- AMC Piezo Sensors
- AMC Transient Detections
- AMC module 64 ch. digital IO
- AMC for signal processing (FPGA, DSP)
- AMC module 32 ch. slow analog I/O (1MHz)
- AMC stepper motor controller
- RF Reference receiver and distribution

Easy system upgrade -> new AMC boards -> new functionality Communication to AMC boards

HELMHOLTZ

LLRF-ATCA Board

LLRF-ATCA Board

Communications:

GigaBit Ethernet

PCI-E

DLinks

DSP-DSP bus

User-Defined Protocols FPGA-FPGA, FPGA-AMC

Resources:

- FPGA
- 3 x DSP TS201
- Easy upgrade via specialized AMC cards !!!

Multiprocessor Computation

Multiprocessor computation and distribution of algorithms

Cluster of Dual CPU Intel Processors Unit (ADLINK CPU-6890 board) Fast GigaBit Ethernet on backplane Up to 8 Boards

Low Level Applications

Procedures and supplementary data processing necessary to execute control algorithms

- 1. Communication
- 2. System Identification
- 3. Control Algorithms
- 4. Beam Monitoring
- 5. Tuner Control
- 6. Exception Detection and Handling

Functional block diagram of LLRF control structure

Low Level Applications functional arrangement

Functional block diagram of Multi-Cavity Control System

HELMHOLTZ

Algebraic model of multi-cavity control system

Cavity control system Functional block diagram of MATLAB implementation

Tomasz Czarski, Maciej Linczuk, Institute of Electronic Systems, WUT, Warsaw

HELMHOLTZ

The functional block diagram of the FPGA controller structure with channel numbers of data flow

X-Ray Laser Project X-Ray Free-Electron Lase

Adaptive Control Algorithm based on System Identification

X-Ray Laser Project X-Ray Free-Elec

Single cavity control (ACC1 – cavity 4) Adaptive Feed Forward (gain = 0)

X-Ray Laser Project X-Ray Free-Electron

Single cavity control (ACC1) Adaptive Feed Forward (gain = 0)

X-Ray Laser Project X-Ray Free-Electron Lase

Vector sum control of 8 cavities – ACC1 Adaptive Feed Forward (gain=0)

X-Ray Laser Project X-Ray Free-Electron Laser

Vector sum control of MTS module Adaptive Feed Forward (gain=0)

Thank you for your attention

